22nd Baltic Peat Producers Forum

PEAT'S CARBON LIFE-CYCLE FIRST RESULTS

AIN KULL, UNIVERSITY OF TARTU

MARTIN KÜTTIM, TALLINN UNIVERSITY

LAND USE, LAND USE CHANGE AND FORESTRY (LULUCF) TIER 1

$$CO_2 - C_{WW_{peat_{off}-site}} = \frac{(Wt_{dry_peat} \bullet Cfraction_{wt_peat})}{1000}$$

$$CO_2 - C_{WW_{peat_{off-site}}} = \frac{(Vol_{dry_peat} \bullet Cfraction_{vol_peat})}{1000}$$

Default IPCC Cfraction 0.4 (NR) – 0.45 (NP) t C/t peat; 0.07 NP – 0.24 NR t C/m³ peat

Where:

 $CO_2-C_{WW peat_{off-site}} = off-site CO_2-C$ emissions from peat removed for horticultural use, Gg C yr⁻¹

 $Wt_{dry_{peat}} = air-dry$ weight of extracted peat, tonnes yr^{-1}

 $Vol_{dry peat} = volume of air-dry peat extracted, m³ yr⁻¹$

 $Cfraction_{wt_{peat}} = carbon fraction of air-dry peat by weight, tonnes C (tonne of air-dry peat)⁻¹$ Cfraction_{vol peat} = carbon fraction of air-dry peat by volume, tonnes C (m³ of air-dry peat)⁻¹

IPCC Guidelines for National Greenhouse Gas Inventories. Chapter 7: Wetlands

ESTONIAN ON- AND OFF-SITE EMISSIONS OF USING HORTICULTURAL PEAT

Off-site CO2 emissions from horticultural peat

On-site CO2, CH4 and N2O emissions from peat extraction and land converted for peat extraction

STUDY MOTIVATION AND AIMS

- BALTIC COUNTRIES PROVIDE ANNUALLY 2.5 3 MILLION TONS OF PEAT FOR GROWING MEDIA
- OFF-SITE CARBON EMISSION IS HEAVY BURDEN TO ALL PEAT MINING COUNTRIES WHILE DEMAND FOR GROWING MEDIUM IS INCREASING
- CURRENT UNDERSTANDING AND REPORTING OF PEAT SUBSTRATE RELATED CARBON CYCLE IS LIMITED
- WE ACKNOWLEDGE CEO OF ESTONIAN PEAT ASSOCIATION ERKI NIITLAAN AND MARTIN KÜTTIM FROM TALLINN UNIVERSITY WHO INITIATED CONSULTATIONS AND THE PROJECT TO STUDY POSSIBILITIES FOR CIRCULAR ECONOMY IN PEAT INDUSTRY

USE OF PEAT EXTRACTED IN ESTONIA 2022

MAIN EXPORT MARKETS FOR ESTONIAN PEAT

		1000 tons	M€
1	The Netherlands	413	23,2
2	China	163	31,7
3	Germany	131	6,1
4	Spain	97	13,7
5	France	86	7,5
6	Belgium	78	4,4
7	Latvia	43	4,2
8	Poland	27	3,5
9	Turkey	26	4,2
10	Marocco	0 0 17	2,3

ORNAMENTAL PLANTS CONTAINER, INDOOR

• Substrate C-loss 1.2 - 5.7% per year

• Substrate and biomass is handled as organic waste and composted

• C-loss during composting is 18-22%

 C TO SOIL = ((SUBSTRATE)-(SUBSTRATE LOSS)+ABOVE GROUND BIOMASS + BELOWGROUND BIOMASS)*0.8

VEGETABLES CONTAINERS

- 2 pathways:
 - a) primary use + composting (e.g. salads)
 - b) primary use with growing seedlings and planting to te soil
 + biomass residuals
- <u>Broccoli and cauliflower:</u> 30 000 40 000 plants per hectare *
 7.9 g C in substrate = 0.237 0.316 t C per hectare to field soil

<u>3 substrates:</u> C-content 42.0% (±1.41) 47.8% (±0.50)

48.4% (±0.55)

<u>Salads</u>: 62 500 – 120 000 plants per hectare * 3.2 g C substrate
 = 0.2 – 0.384 t C per hectare to field soil

(FORESTRY) TREE NURSERY OPEN ROOT AND CONTAINER PLANTS

- 2 pathways:
 - a) open root plants
 - b) container plants
- Used substrate (after 2-3 yeat usage) is used as soil improver, usually 3-5 t/ha (wet weight)
- Container plants planted directly to the soil container plants are preferred in case of <u>organic soils</u> (to mitigate frost heaving risk) and dry/sandy soils (improves soil moisture)
- Forest seedles: 2200 3200 plants per hectare * 9.5 g C in substrate = 0.02 – 0.03 t C per hectare to forest soil

CARBON LOSS IN SUBSTRATE

Predicted remaining carbon mass following a single addition of organic matter in the longterm field experiment (Hyvonen et al., 1996)

Compost, staw, wood fiber are near C-neutral but mixing them with peat will lead higher short-term CO_2 emissions!

Fuchsman CH. Peat. Industrial Chemistry and Technology. Oxford, UK: Academic Press/Elsevier 1980

TIER 2

		Lignin,	Hemicellulose,	Cellulose,	
	von Post	%	%	%	org C, %
Site 1	H5	39.9	16.9	15.8	46.6
Site 2	H5	55.9	6.7	9.3	47.8
Site 3	H4	55.1	6.6	10.4	48.3
Site 4	H6	68.6	0.6	1.9	47.5
Site 5	H6	44.2	2.6	25	47.5
Site 6	H5	44.5	2	22.1	47.8
Site 7	H6	68.2	3.8	4	47.4
Site 8	H6	55.1	19.3	2.2	45.4
Site 9	H4	52.9	8.8	13.1	46.3
Site 10	H7	65	5.5	2.8	49
Site 11	H6	51	21.7	5.2	48.5
Site 12	H4	40.2	15.3	15.8	46.2
Site 13	H5	41.9	4	27.7	48.9
Site 14	H6	60.9	11.9	2.3	46.2
Average		53.1	8.9	11.3	47.4

- Actual national values for peat C content
- Exclusion of substrate which is planted/spreaded to peat soils
- Accounting for average C remaining in soil as substrate after-use
- Substrate lignin content is important if Tier 3 is aimed...

TIER 3

 Know your customer: where and how substrate is used?
 what is soil clay and org C content? model local/regional soil org C change

- Use local peat chemical properties to model remaining carbon mass
- Exclude double-counting: area-based CO₂ emissions in agricultural and forestry sector include peat emissions that are already accounted as peat industry off-site emissions
- RothC model calculation by Estonian University of Life Sciences shows that at least 15,7% and up to 27-30% of peat C may stay as stable carbon in soil.

Froger et al., 2024 https://doi.org/10.1016/j.geoderma.2024.117027

0